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Abstract: The production of palm oil biodiesel in I.ndcmesmas the potential to negatively impact
the enffflonment if not managed properly. Therefore, we conducted a life cycle assessment (LCA)
study on the production of palm oil biodiesel to assess the environmental performance in Indonesia.
Using an LCA approach, we analyzed the environmental indicators, including the carbon footprint,
as well as the harm i‘tman health, ecosystem diversity, and resource availability in palm oil
biodiesel production. The functional unit in this study was 1 ton of bicom;el. The life cycle of
palm oil biodiesel production consists of three processing units, namely the oil palm plantation,
palm {Jilpr{)ducfimand biodiesel production. The processing unit with the greatest impact on the
environment was found to be the oil palm plantation. The environmental benefits, name[fffhe use of
phosphate, contributed 62.30% of the 73.40% environmental beneffEfJf the CO; uptake from the oil
palm plantation processing unit. The total human health damage of the life cycle of palm oil biodiesel
production was {}.{}USE@LY, while the total ecosystem’s diversity damage was 2.69 X 10-5 species-yr.
Finally, we cuncludeat the oil palm plantation processing unit was the primary contributor of
the carbon footprint, human health damage, and ecosystem diversity damage, while the biodiesel
production processing unit demonstrated the highest damage to resource availability.

Keywords: biodiesel; carbon footprint; ecosystems; human health; resources

1. Introduction

The total primary energy production in Indonesia in 2018, consisting of petroleum, natural
gas, coal, and renewable energy, reached 411.6 million tons of oil equivalent (Mtoe). About 64% or
261.4 Mtoe of the total production was exported, and these exports were mainly dominated by coal
and liquefied natural gas (LNG) [1]. However, Indonesia is still an importer of energy, especially in
the form of crude oil and fuel products, amounting to 43.2 Mtoe, to meet the needs of its industrial
sector. Indonesia’s total energy consumption (without traditional biomass) in 2018 was approximately
114 Mtoe, with 40% going to the transportation sector, 36% to industry, 16% to households, 6% going to
the commercial sector, and finally, 2% to other sectors. Petroleum production in Indonesia over the
past 10 years has shown a downward trend, from 346 million barrels (949 thousand barrels of oil per
day (BOPD) in 2009 to around 283 million barrels (778 thousand BOPD) in 2018 [1]. The decline in
production was primarily caused by aging main oil wells and relatififl limited new wells.

The reduced production of fossil energy, especially petroleum, as well as global commitments to
the reduction of greenhouse gas emissions, encourage the government of Indonesia to continuously
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support the role ofn.ew and renewable energy to help mairfefgh energy security and independence [1].
According to the Indonf@n Government Regulation No. 79 of 2014 concerning the National Energy
Policy, the targets for new and renewable energy in 2025 are at least 23% and 31% in 2050 [2].
These targets are based on the sustainable and low carbon development scenarios in 2025 and
2050, respectively [1]. One of the policy’s mandates is a 20% biofuel mixture-to-fuel ratio (B20) in
the transportation sector. Indonesia has significant potential for the adoption of renewable energy
sufficient to realize the energy mix targets.

The use of renewable energy in the transportation sector, especially biodiesel, began to develop
rapidly in line with the implementations of the mandatory biofuel policy. In 2018, Indonesia’s production,
export, and domestic demand of biodiesel were, respectively, 4706, 1512, and 2618 kmliters (kL).
The Indonesian government continues to be optimistic about further developments in the use of
biodiesel [1]. Biodiesel production in Indonesia mostly utilizes palm oil as the raw material. The potential
of palm oils in sujijrting biocenergy development policies, in this case biodieselffiignificant. In 2016,
approximately 3.4 million tons of crude palm oil (CPO) were used for biodiesel [3]. Indonesia is the largest
[P oil producing country in the world, responsible for half the global CPO production [4]. The global
production of palm oil (palm oil pulp) is 39 million tons per year. The largefiZiroducers are Indonesia
(17.1 million t) and Malaysia (16.6 million t) [5]. The potential of palm oil as a source of food and as the
mairalw material for biodiesel in Indonesia is also very large [6].

Life cycle assessment (LCA) is a mechanism for analyzing and calculating the total environmental
impact of a product in each stage of its life cycle, including the prepara{fffi] of raw materials,
the production process, sales and transportation, and product disposal [7]. Although biodiesel is
claimed to be arenewable energy, the process of biodiesel production uses chemicals and non-renewable
resources, which can be an environmental burden. The use of urea produces N>O (a greenhouse gas)
and fififitherefore have an impact on the environment [§].

The production of palm oil biodiesel in Indonesia still faces a level of uncertainty [{fie to the
expansion of oil palm plantations, stimulating debates on the envirfgimental consequences. Changes in
land use from the conversion of forest land and agricultural land to oil palm plantations can produce
further environmental implications, such as greenhouse gas (GHG) emissions from changes in soil
ca am stocks and biomass, forest fires, air pollutant emissions, losses of biodiversity, and losses
of anima]smants, and species in forest ecosystems [9-13]. Therefore, an LCA study must be
conducted to evaluate the potential environmental impact associated with the life cycle of palm oil
biocll production.

There have already been a number of studies that reported on the life cycles of palm oil
production [14-30]. However, the majority focused on GHG emissions and energy requirements [14-25],
and only a few LCAs &fffressed a wider set of environmental impacts [25-30]. The life cycle studies that
accounted for carbm@issions from land use change (LUC) [15,19,22,23,31,32] showed that this has a
significant influence on the greenhouse gas (GHG) emission intensity of palm oil biodiesel production.
However, other reported results on the estimation of the impacts of palm oil area ansitm range
widely, indicating that this remains an unclear topic [14,33]. The environmental impacts of palm
[ffbiodiesel also depend on the land use practices, residue disposal practices, biogas management,
palm oil mill effluent (POME) treatments [16,18,19,21,28,34,35]. The calculatm of nitrogen
(nitrous oxide N> O, nitrogen oxides NOx, and ammonia NH3), and phosphorus field emissions from
oil palm plantations are also a critical aspect of an LCA of palm oil biodiesel. These calculations
influence the results of several environmental impacts, such as the GHG intensity, eutrophication,
and acidification [19,21,24,28 36].

The majority of studies that perform an LCA of palm oil biodiesel production cover only a single
issue, such as greenhouse gas emissions. An exception is Schmidt et al. [30], whrried out LCA
studies on palm oil production and addressed multiple issues, including eight impact categories,
namely global warming, ozone depletion, acidification, eutrophication, photochemical smog, land
use, biodiversity, and land transformation. However, this study was still limited to the midpoint
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level and the assessment was not carried out until the endpoint level. Other relevant studies are
by Harsono et al., Siregar et al., and Soraya et al. [19,26,27], who looked at the pt)t‘ent‘ia]m)act‘s of
greenhouse gas emissions and global warming by calculating the CO, emitted during the life cycle of
biodiesel production.

Henson et al. [37] conducted a study aimed at estimating the carbon sequestration and emissions,
associated with both the cultivation of palm oil and the initial processing of its products in the mill.
Howe they did not include the effects of transportation and processing of palm oils. A comprehensive
study on the carbon footprint of palm oil biodiesel production that includes CO, sources and CO, sinks
has not mjeen performed. Specifically, none of the aforementioned studies provided a comprehensive
account of the carbon footprint at the stage of palm oil production and bi§Zifesel production. Therefore,
our study aimed to assess the CO; uptake and emissions throughout the life cme of palm oil biodiesel
production in Indonesia, which consists of three processing units, namely the oil palm plantation, palm
oil production, and biodiesel production.

Additionally, Harsono et al., Siregar et al., and Soraya et al. [19,26,27] did not consider the CO;
uptake. They studied the greenhouse gas emissions and the global warming potential based on the CO,
emitted during the production process. They did not consider CO; sinks. We are of the opinion that
the CO; absorption by trees and plants is significant enough to be considered. Therefore, we calculated
and analyzed the CO, emissions from the production process and compared this to the CO, that can be
absorbed by trees and plants. Additionally, we considered the damage to human health, to ecosystem
diversity, and to resource availability.

2. Materials and Methods

2.1. Life Cycle Inventory (LCI)

In this study, we used the SimaPro 9.0.0.49 f§EBlty version software (the latest version at the
time) and the Ecoinvent 3 database [38]. The main goal was to smd}ma environmental performance
and identify the main envirofffental hotspots of first-generation (palm oil) biodiesel produced in
Indonesia. The enviroffffental performance of biodiesel palm oil was estimated by employing the LCA
methodology as set in ISO 14040: 2006 Environmental management—Life cycle assessment—Principles
and framework [8]. The attributional LCA (ALCA) approach, which was chosen over the consequential
LCA (CLCA) as the first inventory of inputs and outputs, typically reflecting the global or national
BB rages and using normative allocation rules, was scaled linearly to the functional unit. Data on the
palm oil mill production process were collected from a typical palm oil mill located in the Banyuasin
Regency, Sdflh Sumatra Province, Indonesia, situated in close proximity to an oil palm plantation [27].
Data on the biodiesel production process were collected from a biodiesel pilot plant ififject in LEMIGAS
(Research and Development Center of Oil and Gas Technology), Indonesia [27]. The functional unit
used in this study wadffon of biodiesel from palm oil.

The boundary of this study was a cradle-to-gate system, where the assessment started from the
production of raw materials (fresh fruit bunch) to the production of finished products (biodiesel).
The life cycl i the cradle-to-gate biodiesel palm oil production consisted of three processing units, i.e,,
the oil palm plantation to produce the fresh fruit bunch (FFB), the crude palm oil production to produce
the CPO, and the biodiesel production to produce the biodiesel [19,26,27] (Figure 1). The black dashed
line indicates the boundary of this LCA study. The production processing unit is shown in a black-
and light blue-striped box, while the material, fuel, and energy inputs are shown in the black-striped
box. The product, end-product, and co-product outputs are shown in the black-striped box and the
emission outputs are shown in red lines.
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Figure 1. System boundary of palm oil biodiesel production.

Oil palm plantations have material and fuel inputs, including fertilizer (urea, phosphate,
and dolomite), herbicides (glyphosate, water, and land), and diesel fuel for trucks (10 t). Additionally,
they have a product output, namely FFB. Finally, oil palm plantations have emission outputs, including

air emissions, namely C and N,O. The inputs for palm oil production are materials, fuel, and energy

in the form of electricity, diesel for generators, water for boilers, and diesel fuel for trucks (10 t).

The outputs for palm oil production are CPO and emission outputs, including water emissions,

namely palm oil mill effluent (POME), and soil emissions, namely shell, kernel, fiber, ash, and press

cake. Biodiesel production has material and energy inputs, namely electricity, methanol, sodium

hydroxide, and water, as well as an end-product output (biodiesel), and a co-product output (glycerol).
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Biodiesel production also has emission outputs, including water emissions (palm oil, methanol,
and sodium hydroxide). The assumptions in this study were:

(1) Oil palm plantations used peat lands;

(2) Water used by the oil palm plantation was river water;

(3) Water used in the boiler was ultrapure water;

(4) POME was liquid waste that was directly emitted to the waters;

(5)  Shell, kernel, fiber, ash, and press cake were solid waste that was directly emitted to the ground surface;
(6) Water used for biodiesel washing was ultrapure water; and

—
~J
—

The remaining methanol, sodium hydroxide, water, and palm oil were liquid waste that was
directly ernjtted%ﬁn the waters.

The data on the life cycle inventory (LCI) were taken from several sources in order to obtain a
complete and comprehensive picture. The following is an overview of the LCI data in the context of

the oilZZ3Im plantation, palm oil production, and biodiesel production processing units.
34
2.1.1. Oil Palm Plantation

An oil palm plantation has three types of inputs, namely fertilizer, herbicides, and diesel
fuel. The fertilizer consists of urea (104.37 kg), phosphate (109.73 kg), and dolomite (97.92 kg) [27].
The nitrogen content in urea helps plants develop additional green leaf matter, called chlorophyll.
With abundant green leaves, plants will find it easier to carry out photosynthesis [39]. Phosphate is
useful for stimulating the growth of palm oil roots [40]. The herbicide input consists of glyphosate
(3 kg) [27]. Diesel fuel input consists of 5.03 L for a 10-t truck [26]. Oil palm plantations have air
emissions in the form of carbon (C) (10.7 t) and dinitrogen monoxide (N>O) (8 kg), both from the
drained peatland [41]. A high productivity of palm oil is achieved by good management of palm oil
cultivation, including the provision of fertilizers and herbicides. Figure 2 is a map of the oil palm
plantation in the Banyuasin Regency.

104°27°40°E 104°27'50'E

2'5540'S
2°55'40"S

104°27'40"E 104°2750°E
Information: 2 ‘rﬁ; % i
Oil palm plantation area 0.86 Ha N b,

in Banyuasin Regency
|:| Palm oil plant in Banyuasin Regency A

0 0025005 0,1 015 02

&

Figure 2. Map of the oil palm plantation in the Banyuasin Regency (source: Google Earth).
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The map of the oil palm plantation was taken from satellite imagery using Google Earth software.
The selected imagery was taken in 2014, which is the same year as when an inventory was done of the
oil palm plantations. The map results from Google Earth were then processed with ArcGIS software to
digitize the area covering the oil palm pljtation. The plantation land area of 0.86 ha is indicated with
a green box. The oil palm plantation is located in the Banyuasin Regendgf§outh Sumatra Province,
Indonesia. The oil palm plantation is located near the palm oil plant. The production of 1 ton of
palm oil biodiesel requires a plantation of 0.86 ha in size. The plantation area of 0.86 ha is capable of

produc.ing 6.39 tons of fresh fruit bunches (Figure 2).
7
2.1.2. Palm Oil Production

The production of palm oil requires electricity, diesel fuel, and water. The electricity input is equal
to 95.81 kWh [27]. The diesel fuel supports a 4.9-L generator (germ and 2.54 L of diesel fuel goes to
the 10-t truck [26]. The boiler unit uses 5.75 m® of water [27]. The emissions from palm oil production
affect the water and soil. The emissions into water consist of 3.83 m® of POME discharge [27], while the
emissions into soil consist of 0.22 of shell, 0.35 of kernel, 0.83 of fiber, 0.032 of ash, and 1.66 t of press
cake [27]. Palm oil production has a CPO output of 1.28 t [27], whereas the palm oil mill is capable of
producing 1.28 t of CPO from an FFB input of 6.39 t.

2.1.3. Biodiesel Production

Biodiesel production requires several inputs, namely electricity, methanol, sodium hydroxide,
and water. The electricity input is 256.5 kWh [27]. The input of methanol and sodium hydroxide
amount to 0.64 tand 0.03 t, respectively [27]. The production of biodiesel involves a transesterification
reaction process. Palm oil reacts with methanol (input) with the addition of a sodium hydroxide
catalyst (input) to accelerate the reaction for the formation of methyl ester (biodiesel) and glycerol.
Biodiesel production involves emissions into water in the form of palm oil, methanol, and sodium
hydroxide. The output of the entire biodiesel production process is 1 t of biEflsel as the end-product
and 0.22 t of glycerol as the co-product [27]. The LCI data are displayed in Table 1.

Table 1. The life cycle inventory of palm oil biodiesel production.

Activity Materials Input Reference

Chemical 315.02 kg
Water 2959.51 L [26,27]
e Fuel5.03L

(1)  Oil palm plantation processing unit
0.86 ha to produce FFB 6.39 t

) ) ) . e Electricity 95.81 kWh
(2)  Palm oil production processing unitto Diesel 7.44 L

produce CPO 1.28 ¢ [26,27]
e Water 575 m?
L. . . . e  Electricity 256.5 kWh,
(3) Biodiesel prqdugmn processing unit e  Chemical 0.67 t 271
to produce biodiesel 1 t

. Water 1.5 m®

Soraya et al. [27] reported that 0.134 f land can produce 1 t of FFB, whereas 4.99 t of FFB can
produce 1t 00, and 1.28 t of CPO can produce 1 t of biodiesel. Based on this irlformation‘) tof
FFB and 0.86 ha of land would be required to produce 1 t of biodiesel. Further details on the life cycle
%enmry are provided in the supporting information.

83
2.2. Life Cycle Impact Aﬁment (LCIA)

This study aimed to assess the environmental performance of palm oil biodiesel production in
Indonesia. The LCIA was used to analyze the carbon footprint, midpoint impact, and endpoint damage
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a.nbiadiesel palm oil production in Indonesia. This study utilized the Greenhouse Gas Protocol and
ReCiPe Endpoint (H) for the impacassessment. Four categories of carbon footprint impacts were
analyzed in this study, namely the fossil CO; eq, biogenic CO, eq, CO, from land transformation,
and CO, uptake. Fossils CO; eq are carbons originating from fusm'ue]s, while biogenic CO; eq is
carbon originating from biomass sources, such as trees and plants. Biogenic CO, conffijfrom biomass
combustion which is part of the natural carbon cycle. For biomass burning, the carbon stored in
organic material will be released inff[he atmosphere and captured back into the natural carbon cycle
as the biomass regrows. This cycle helps maintain a constant level of carbon in the environment and
plays an important role in balancing EE}'s natural carbon cycle. CO; from land transformatiofiflas a
direct impact, and CO, uptake is CO, that is stored in trees and plants as they grow [42]. The impact
categories grouped into damage categories are shown in Table 2.

Table 2. Impact categories grouped into damage categories.

No Impact Category Damage Category Unit
1 Climate change—human health
2 Ozone depletion
3 Human toxicity
4 Pl'm:hcmical oxidant formation Eumanihealth DALY
5 Particulate matter formation
6 lonizing radiation
7 Climate change—ecosystems
8 rrcs trial acidification
9 Freshwater eutrophication
10 Terrestrial ecotoxicity
11 Freshwater ecotoxicity Ecosystems species-yr
12 Marine ecotoxicity
13 Agricultural land occupation
14 @rban land occupation
15 Natural land transformation
16 Metal depletion R . s
17 Fossil depletion esources

3. Results and Dism.gon
12
3.1. Carbon Footprint of Oil Palm Plantation

The carbon footprint of oil palm plantation is split into four impact categories, namely fossil
CO; eq, biogenic CO; eq, CO,; eq from land transformation, and CO; uptake. The resulting figures for
these four categories are shown in Table 3.

Table 3. Characterization of the carbon footprint of the oil palm plantation.

. FFB-0il Palm Urea, Phosphate . .
I ct Category Unit Total Plantation as N Fertilizer, as P2Os Dolomite Glyphosate Diesel
il CO; eq kg CO, eq 7BTT7 2120 347.779 234537 4303 34.786 2371
genic CO; eq kg COy eq 18,575 0 3.559 13275 0.247 1.469 0.025
eq from land i
O nsformation kg CO; eq 7.940 [i] 0.185 7.633 0.007 0113 0.001
CO; uptake kg COy eq 43134 0 4.780 36582 0221 1.529 0.022

59
The largest contribution of the carbon footprint gm the oil palm plantation came from the FFB-oil
palm planfgfion, with 2120 kg CO; eq in the category of impact of fossil CO; eq caused by air emissions
(Table 3). Fossil CO; eq and biogenic CO; eq came from different sources. Fossil CO; eq came from
burning fossil fuels and N2O gas from drained peatland. Biogenic CO; eq came from burning biomass
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fuels [22]. The global warming potential (GWP) 100 years relative to the fossil CO; eq for N,O gas
emissions was 298 kg of fossil CO; eq, compared to 1 kg of NoO [22,23,41]. Therefore, the contribution
of fossil CO, eq was greater than the biogenic CO; eq. There were two forms of air emissions, namely
carbon and dinitrogen monoxide (N>O) from drained peatland. Carbon has a smaller global warming
effect potential than that of N,O. The pollution effect caused by N>O gas is 298 times larger than that
EFEIO>. In Indonesia, peatlands are being drained and cleared for facilitating oil palm plantations [24].
The lowland peatlands of Southeast Asia represent an immense reservoir of fossil carbon and are
reportedly responsible for 30% of the global carbon dioxide (CO,) emissionffgm land use, land use
change, and forestry [43]. The largest contributor in the impact category of biogenic CO; eq, COz eq
from land transformation, and CO, uptake is phosphate fertilizer. The reason for this is that biomass
fuel is used in the phosphate fertilizer production process. Phosphate production produces large
amounts of biogenic CO; eq. We consider CO; uptake to be CO; that is easily absorbed by trees and
plants, and this is considered a bicm'lic CO, [42].

The total carbon footprint of the oil palm plantation hjs study was 2727 kg COz eq. Thisis a
larger carbon footprint than those reported by Castanheira et al., Harsonoetal., Choo et al., Souza et al.,
Siregar et al., and Soraya et al. [14,19,21,24,26,27], who respectively reported 1800, 1440, 119, 1220, 1380,
and 400 kg CO; eq. The reason for the carbon footprint being larger in this study is that the inventory
data include N,O gas air emissions. Choo et al,, Siregar et al,, and Soraya et al. [21,26,27] excluded
N>O gas air emissions, whereas Castanheira et al. and Harsono et al. [14,19] included N>O gas air
emiiions, resulting in a larger carbon footprint [21,26,27].

12
3.2. Carbon Footprint of Palm Oil Production

The carbon footprint of palm oil production includes FFB-oil palm plantations as an input.
The carbon footprint of palm oil production is shown in Table 4.
Table 4. Characterization of the carbon footprint of palm oil production.

CPO-Palm Diesel Wate Diesel FFB-0il Electricity,

Impact Category Unit Total 0il fora ul h: ::re for a Palm Low

Production Genset P Truck Plantation  Voltage

ssil CO; eq kg COs eq 2825536 0 2314 0262 1197 2743.777 77.985
genic COy eq kg COy eq 21517 Q 0.024 0.004 0.013 18.575 2902
CO:eqfromland oo 00 153 0 0.001 00002 0.0006 7940 0.211

transformation

COy uptake kg COy eq 45.895 Q 0.029 0.004 0011 43.134 2724

In fossil CO, eq, the contributions of FFB-oil palm plantations and electricity were, respectively,
2743.77 and 77.98 kg CO; eq. In biogenic CO; eq, the contributions of FFB-o0il palm plantations and
electricity were, respectively, 18.57 and 2902 kg CO; eq. In the CO, eq from land transffmation,
the contributions of FFB-o0il palm plantations and electricity were, respectively, 7940 and 0.211 kg CO; eq.
In the CO; uptake, the contributions of FFB-oil palm plantations and electricity were, respectively,
43.134 and 2724 kg CO; eq (TablegE}

The results showed that, in fossil CO3 eq, biogenic CO; eq, CO; eq from land transformation,
and CO, uptake, the largest contributor was FFB-oil palm plantations, followed by electricity. The on
footprint of palm oil production in this study totaled 2809 kg CO; eq. Th.isluded the total on
footprint of the oil palm plantation, and this resultis greater than the results of other studies (Bessou etal.,
Castanheiraetal., Rodrigues etal., Kaewmai etal,, Hansen et al., Harsono et al., Choo etal., Souza etal.,
Siregar et al.,, Soraya et al., and Schmidt [9,14,15,17-19,21,24,26,27,44]). The results of these studies are
smaller as the LCA calculation did not include the N>O gas from drained peatlands. The results of this
study are less than the results of Reijnders and Huijbregts [45], who reported 19,700 kg CO7 eq.
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3.3. Carbon Footprint of Biodiesel Production

The carbon footprint of biodiesel production included CPO-palm oil production as an input.
Therefore, CPO-palm oil production emerged as one of the la.rgesttributors out of the four impact
categories. The carbon footprint of biodiesel production is shown in Table 5.

Table 5. Characterization of the carbon footprint of biodiesel production.

Biodiesel— Sodi Wat CPO-Falm Electricity,

Impact Category Unit Total Biodiesel Methanol H od lu‘?‘d Ull‘ra et Oil Low

Production ydroxide AP production Voltage

_g‘)siil COs eq kgCOzeq 2893613 0 316583 32922 55968 2316.939 171.200
genic CO; eq kg COs eq 28777 0 2612 1332 0.818 17644 6370
B mmowr 7 0 0.177 0.080 0.045 6.685 0.463

transformation

CO; uptake kg COseq 48184 0 2.388 1337 0.846 37634 5980

The three largest contributors to both the non-biogenic CO, (fossil) and biogenic CO, (biomass)
carbon footprint were CPO-palm oil production, methanol, and electricity, as presented in Table 5.
Biogenic CO; came from the utilization of biomass in the life cycle of these processes. In addition,
the three largest contributors to biogenic CO, eq were CPO-palm oil production (17,644), electricity
(6370), and methanol (2612 kg COs eq).

total carbon footprint of biodiesel production was 2882 kg CO, eq, which includes that of the
FFB-oil palfgfiflantation and CPO-palm oil production. This is a larger carbon footprint than reported
by Hansen et al. (875), Choo et al. (1113), Souza et al. (1901), Siregar et al. (2570), and Soraya et al.
(690 kg CO» eq) [18,21,24,26,27]. The results of these studies are smaller as the LCA calculation does
not include the N,O gas from drained peatlands. The carbon footprint environmental hotspot from
biodiesel production is shown in Figure 3, which shows the network analysis for the fossil CO; eq
impact category. The CO> eq network from fossils is highlighted in the discussion as it generated a
higher carbon footprint compared to the biogenic CO; from biomass utilization and the CO; from
land transformation.

The results from the network analysis of fossil CO; eq showed that 80.10% of the environmental
hotspots from biodiesel production were primarily coming from the palm oil production.
The environmental hotspots are shown with a wide red arrow in Figure 3. The primary contributor
to environmental hotspots in the palm oil production unit was the oil palm plantation, contributing
77 .80%. Other contributors were diesel (0.11%), water (0.97%), and electricity (2.03%). This makes
the oil palm plantation in itself an environmental hotspot due to contributing 77.80% of 80.10% to
the environmental hotspots in palm oil production. The palm oil production processing unit itself
contributed 3.3% (Figure 3).

The environmental hotspot of fossil CO; eq from biodiesel production v\mhe oil palm plantation,
which contributed 77.80% of the total environmental hotsm of fossil CO; eqin the life cycle of palm oil
biodiesel production. This result is in line with Harsono et al., Siregar et al., and Soraya et al. [19,26,27].
The material and fuel inputs in oil palm plantations, namely urea, phosphate fertilizer, dolomite,
glyphosate, and diesel contributed, respectively, 9.86%, 6.65%, 0.122%, 0.986%, and 0.056%, totaling
17.62%. Therefore, 60.18% of the contributions came from emissions. The inventory data of this
study included air emissions, namely dinitrogen monoxide (N,O) from drained peatlands. From this,
itis clear that the N>O gas from drained peatlands contributed 60.18% of the 77.80% to the oil palm
plantation. This also indicates that 60.18% of the 100% environmental hotspot of fossil CO; eq of
biodiesel production was caused by N>O gas from drained peatlands.
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Figure 3. Environmental hotspots from the network analysis of fossil CO; eq.

The results of the environmental hotspot of fossil CO, eq were the first findings in this study.
They indicate that the life cycle of biodiesel production from palm oil and the oil palm plantation unit
contributed majorly (81.10%) toward forming an environmental hotspot of fossil CO; eq of biodiesel
production. This was the same for N,O gas from drained peatlands (77.80%), which is the main
contributor of the palm oil processing unit, and the remaining 22.2% of contributions came from the
palm oil production and biodiesel production units at 3.3% and 18.9%, respectively.

The environmental benefit of the carbon footprint of biodiesel production is shown in Figure 4.
The network analysis in Figure 4 is a network of the impact categories for the CO, uptake.

The data in Figure 4 are the percentage contributions of the CO, uptake impact categories.
The percentage contributions of the CO; uptake impact categories on the life cycle of palm oil biodiesel
production were taken from the chemical inputs, fuel, electricity, and emissions outputs.

The CO; uptake network analysis showed that the environmental benefits of biodiesel production
stemmed for 78.10% from palm oil production, as further detailed in Figure 4. InFigure 4, the environmental
benefits are illustrated with a wide green arrow. The primary contributor to the environmental benefits
of the palm oil production unit was the oil palm plantation with 73.40%, followed by electricity (3.4%),
water (0.88%), and diesel (0.06%). Figure 4 also shows that the contribution of phosphate to the oil
palm plantation processing unit’s contribution was a considerable 62.3%. We therefore conclude that the
environmental benefits are due to the use of phosphate. The palm oil processing unit itself contributed
4.7% to the total emﬁumental benefit (Figure 4).
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Figure 4. Environmental benefits from the network analysis of the CO, uptake.

This research included environmental benefits, which is a unique aspect compared to the research
of Harsono et al., Siregar et al., and Soraya et al. [19,26,27]. The results on the environmental benefits
of CO, uptake were the second finding in this study. These findings show the life cycle of biodiesel
production from palm oil. CO; uptake is CO; that can be absorbed by trees and plants, and thus
provide benefits to the environment. The total CO, uptake by plants in the life cycle of producing 1 ton
of palm oil biodiesel is 48.184 kg CO, eq (Table 5).

One hectare (ha) of oil palm plantations can absorb CO; equivalent to 97.1% [46]. CO; emissions
from oil palm plantations and CO, absorption can balance out 25 years after planting palm oils [46].
Fossil fuels in nature are formed through a long process of millions of years under conditions of high
pressure and temperature deep in the earth. The carbon chains contained in fossil fuels are complex C
chains which are not easily decomposed in the atmosphere. This type of fossil fuel CO, is not easily
absorbed by trees and plants. [47].

Biogenic CO, is produced from the burning of plant biomass and takes a short time to form as
the plant grows from bud to maturity (less than 5 years). Oil palms produce fruit and biomass that
may be harvested after only 4 years [48]. Burning biomass emits carbon that is part of the biogenic
carbon cycle. Biomass combustion simply returns to the atmosphere the carbon that was absorbed as
the plants grew [47].

The CO; uptake in this study came from the biogenic CO; sink of plants. A biogenic CO; sink
is the absorption of CO; by plants through the process of photosynthesis. Photosynthesis produces
energy that is useful for plants to grow. Through photosynthesis, plants convert atmospheric CO; into
biomass [49]. Atnight, the plants perform respiration to produce biogenic CO, [50]. Thus, the biogenic
CO; in this study came from the burning of biomass fuel and plant respiration. The CO; eq from land
transformation came from CO; emissions in the process of converting forests to oil palm plantations
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through forest fires. Fossil fuel CO; eq came from N>O gas from drained peatlands (the main source),
the use of urea, electricity, and the use of diesel fuel in gensets and trucks. In the LCA calculation
results, N;O gas from drained pg&jands was included in the impact category of fossil CO, eq. Finally,
in the results of this study, the production of 1 ton of biodiesel required 0.86 ha Eand plantation
and produced 2893.61 kg fossil fuel CO; eq, 28.77 kg biogenic CO, eq, 7.451 kg CO, eq from land
transformation, and the uptake of 3.18 kg COs eq (Table 5).

7

3.4. Impact and Damageﬁssessmem of Oil Palm Plantation

The results from the impact assessment of the oil palm plantation are divided into 17 impact
categories. These 17 impact categories are further divided into six impact categories g} DALY units,
nine impact categories with species-yr units, and two impact categories with $ units. The results from
the impact assessment of the oil palm plantation are shown in Table 6.

The three largest contributors out of the 17 impact categor@ere the FFB-oil palm plantations,
urea, and phosphate. FFB-oil palm plantdfZhs contribute to climate change—Human health and
climate change—Ecosystems with 0.00334 DALY and 1.89 x 10~5 species-yr, respectively. Urea had
eight major contributors, namely ozone depletion (1.27 x 10-7 DALY), photochemical oxidant
formation (2.92 x 1078 DALY), particulate matter formation (0.000213 DALY), terrestrial acidification
(1.39 x 1078 species-yr), marine ecotoxicity (4.73 x 10-10 species-yr), natural land transformation
(1.71 x 1077 species-yr), metal depletion (1.503 $), and fossil depletion (22.451 $). Phosphate also
had eight major contributors, namely human toxicity (0.000138 DALY), particulate matter formation
(0.000311 DALY), ionizing radiation (5.48 x 107 DALY), terrestrial ecotoxicity (2.7 x 107 species-yr),
agricultural land occupation (6.99 x 1077 species-yr), urban land occupation (3.82 x 1077 species-yr),
metal depletion (2.307 ), and fossil depletion (12.565 $) (Table 6)

The FFB-oil palm plantation proces@% unit contributed to climate change—human health and
climate change—ecosystems at 0.00334 DALY andf¥B9 x 107" species-yr, respectively. A study by
Bessou et al. [51] reported N,O emissions related to nitifigkn associated with the decomposition of soil
organic carbon (SOCccuunting for N> O emissions related to carbon losses t‘h.rouge C:N ratio
resulted in increased land use and land use change (LULUC) climate change impacts. Peatlands play
an important role in the emissions of the greenhouse gases CO,, CHy, ancm(), which are produced
during the mineralization of peat organic matter [52]. In the atmosphere, nitrogen oxides (NOy) can
react with volatile organic compounds (VOCs) when exposed to sunlight radiation, resulting in the
formation of photochemical oxidants [53,54].

Nitrates produced from the nitrification process can cause terrestrial acidification [55]. Foth [55]
suggested that nitrogen-containing fertilizers, in the form of ammonium, can be turned into nitrates,
which, in turn, decrease the soil pH. Nitrification, on the other hand, results in the formation of hydrogen
ions (H*) and has the potential to increase the soil pH. Nitrates released into the water can cause
freshwater eutrophication, which is a direct result of algae growth [56]. Nitrite and ammonium are
compounds that can cause human toxicity, freshwater ecotoxicity, and marine ecotoxicity. According to
Wantasen et al. [57], abiotic environments can be polluted by the transformation of nitrogen, including
nitrates, nitrites, and ammonium. Nitrate is a nutrient that plays a role in the growth of aquatic
plants and algae, causing uncontrolled growth of aquatic flora, while killing other aquatic organisms.
According to Rustadi [58], a high nitrogen concentration can cause excessive phy toplankton growth,
or eutrophication, and can cause reservoir water pollution. In addition to the abiotic environment,
the results of the transformation of nitrogen can also hurt humans. Nitrites and nitrates in soil can
pollute the surrounding water sources, such as rivers.
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Phosphate contributes to the three largest impact categories, namely terrestrial ecotoxicity
(2.7 x 1077 species-yr), agricultural land occupation (6.99 x 1077 species-yr), and urban land occupation
(3.82x 1077 species-yr). The manufacturing process of phosphate uses the raw materials of natural
phosphate rock, which may contain heavy metals, such as cadmium (Cd), and may cause terrestrial
ecotoxicity [56,59]. Therefore, natural phosphate fertilizer and its derivatives have the potential
to transfer heavy metals into soil. While part of the heavy metals in fertilizer will move into
plant tissue, some remains in the soil. A study by Syers et al. [60] suggested a high content of Zn
(57-1010), arsenic (2-23), cadmium (2-100), and uranium (64-153 mg/kg) in various types of natural
phosphate. The production of phosphate fertilizers whose raw materials are taken from nature can
lead to agricultural land occupation and urban land occupation.

Thiimage assessment results of the oil palm plantation are displayed in three impact categories,
namely human health (DALY), ecosystems (species-yr), and resources ($). These are shown in Table 7.

Table 7. Damage assessment of the oil palm plantation.

Damage . FFB-0il Palm Urea, Phosphate . .
Category Unit Total Plantation as N Fertilizer, as P, 05 Dolomite  Glyphosate Diesel
Human health DALY 0.00499 000334 0000777 0000777 117 %10°%  8E3x107° 527 x10°°
Ecosystems  speciesyr 258x107°  189x 10~  307x10°6  343x10°° 106x10%  327x1077  29x10°8
Resources $ 41.856 0 2395 14.872 0.196 1938 0.896

Table 7 shows that FFB-oil plantations are the primary contributor of damages to human health and
ecosystems. The results of the midpoint characterization will continue until the endpoint. The midpoint
results affect the results at the endpoint. Thus, the endpoint results of the damage assessment of palm
plantations showed that the largest contributions were from oil palm plantations, urea, and phosphate
in human health, ecosystems, and resource damage. The major contributors to damages to resources

were urea and phosphaﬁ
41
3.5. Impact and Damage Assessment of Palm Qil Production

The impact assessment of palm oil production included Ef§-oil palm plantations as an input.
This emerged as one of the largest contributions out of the 17 impact categories. The results of the
impact assessment are shown in Table 8.

The data in Table 8 shows an assessment of the impact on the environment in the palm oil
production unit that comes from chemical inputs, fuel, electricity, and emissions outputs. Table § is the
result of LCA calculations utilizing the ReCiPe method.

Two impact categories were determined to be major contributors, namely FFB-oil palm plantations
and electricity. FFB-oil palm plantations were the largest contributor to eight impacts. These were
climate change—Human health (0.00420 DALY), ozone depletion (2.28 x 107 DALY), human
toxicity (0.000234 DALY), climate change—Ecosystems (2.38 x 10-5 species-yr), terrestrial ecotoxicity
(2.81 x 107 species-yr), urban land occupation (4.32 X 107 species-yr), metal depletion (3.967 $),
and fossil depletion (37.889 $). Electricity was the largest contributor to seven impacts, namely
photochemical oxidant formation (7.6 x 10-Y DALY), particulate matter formation (6.53 x 10-% DALY),
ionizing radiation (1.85 x 1077 DALY), freshwater eutrophication (1.89 x 107 species-yr), freshwater
ecotoxicity (8.38 x 10-10 species-yr), marine ecotoxicity (1.59 x 10-10 species-yr), and fossil depletion
(3.191 %) (Table 8).
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These results sfEllv that FFB-oil palm plantations were the largest contributor in four impact
categories, namely climate change—Human health (0.00420 DALY), climate change—Ecosystems
(2.38 x 10 species-yr), terrestrial ecotoxicity (2.81 X 1077 species-yr), and urban land occupation
(4.32 x 1077 species-yr). The cause of the large contribution to this impact category was explained prior.

The results of the damage assessment of palm oil production included FFB-oil palm plantations
as an input. FFB-oil palm plantations emerged as the largest contributor in three damage categories.
The results are shown in Table 9.

Table 9. Damage assessment of palm oil production.

Damage CPO-Palm  Diesel Water. Diesel FFB-0il Electricity,
Category Unit Total 0il for Ultrapt;re for Palm Low
Production Genset Truck Plantation  Voltage
Human health DALY 0.00520 0 514x107% 6.12x10°7 266x10°° 000499 0.000194
Ecosystems  speciesyr 2.65x1075 2.28x 102 292x107% 266x107° 151x10°% 258x107° 689x10°7
Resources $ 46.494 0 0.874852 0.0155 0.452 41 856 3296

67
EfRble 950“!5 that the FFB-oil palm plantation was the primary contributor in damage assessment
EX)human health, ecosystems, and resources. Electricity demonstrated the second largest contribution
[EZhuman health, ecosystems, and resources. Diesel for gensets and trucks did not contribute greatly
to human health, ecosystems, and resources as the capacity of using diesel for gensets and trucks
was small.

3.6. Impact and Damage Assessment of Biodiesel Production

The damage assessment of biodiesel production also included CPO-palm oil production as an
input. This emerged as one of the largest contributors to the 17 impact categories. The results are
shown in Table 10.

Table 10 shows that, out 17 impact categories, there were six that provided the largest
contribution. They were biodiesel—Biodiesel production, methanol, sodium hydroxide, water,
CPO-palm oil production, and electricity. Biodiesel—biodiesel production contributed to freshwater
ecotoxicity (8.01 x 107" species-yr). Methanol was the largest contributor in eight impact categories,
namely ozone depletion (2.35 x 10-7 E-07 DALY), human toxicity (DALY), photochemical oxidant
formation (5.1 x 1078 DALY), terrestrial acidification (1.67 x 108 species-yr), freshwater ecotoxicity
(4.09 x 107° species-yr), natural land transformation (2.9 x 1077 species-yr), metal depletion (1.221 §),
and fossil depletion (61.422 $). Sodium hydroxide contributed to ozone depletion (5.95 x 10-% DALY).
Water was the major contributor in three categories, namely photochemical oxidant formation
(1.54 x 108 DALY), freshwater eutrophication (2.06 x 1077 species-yr), and urban land occupation
(7.06 % 1078 spedcies-yr).

CPO-palm oil production was the largest contributor in eight categories, namely climate
change—Human health (0.003537 DALY), human toxicity (0.00021 DALY), ionizing radiation
(959 x 1077 DALY), climate change—Ecosystems (2 x 1075 species-yr), terrestrial ecotoxicity
(231 x 1077 species-yr), agricultural land occupation (7.25 x 10-7 species-yr), metal depletion
(3.345 $), and fossil depletion (34.780 $). Electricity was the largest contributor in seven categories,
namely human toxicity (4.64 x 10> DALY), particulate matteffi@mation (0.000143 DALY), ionizing
radiation (4.07 x 10~7 DALY), freshwater eutrophication (4.15 x 10-? species-yr), freshwater ecotoxicity
(1.84 x 107 species-yr), marine ecotoxicity (3.48 x 107¥ species-yr), and fossil depletion (7.005 $)
(Table 10).
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Biodiesel production emits oleic acid compounds into water (8.01 x 1071? species-yr), which cause

it to be the largest contributor in the freshwater ecotoxicity impact category. Methanol was the major
contributor in two categories, namely ozone depletion (2.35 x 10~7 DALY) and fossil fuel depletion
(61.422 $). The process of producing methanol uses coal as a fossil fuel, which causes fossil fuel
depletion. The use of methanol may cause photochemical oxidant formation as methanol is a VOC.
Methanol evaporates into the atmosphere and reacts with NOx, water vapor, and sunlight radiation,
resulting in photochemical oxidant formation.

TIf combustion of coal fuel in the process of producing electricity also produces particulate
matter in the form of PM10, CO,, NOy, and SO; emissions [61]. PM10 contributes to particulate matter
formation (0.000143 DALY). CO,, which reflects infrared radiation back to Earth, contributes t:m)bal
warming. Global warming, in the form of climate change, negatively impacts human health (climate
change—Human health) (0.000236 DALY) and climate change—Ecosystems (1.34 x 107° species-yr).
S0, in the atmosphere can oxidize into H,5O; compounds, which, in turn, produce acid rain [62].
Acid rain contributes to terrestrial acidification (4.65 x 1079 species-yr) (Table 10). Water has one of
the largest contributionggfjurban land occupation (7.06 x 10-8 species-yr). CPO-palm oil production
primarily contributes to climate change—human health (0.003537 DALY), climate change ecosystems
(2x 1075 species-yr), and terrestrial ecotoxicity (231 x 1077 species-yr). Lastly, electricity has three
potential contributions, namely toward ionizing radiation (4.07 x 10-7 DALY), freshwater eutrophication
(4.15 x 107 species-yr), and marine ecotoxicity (3.48 x 10710 ).

Soraya etal. [27] reported that the highest contribution of photochemical oxidation (57.64%) was
caused by biodiesel production. Our results indicated that the highest contribution of photochemical
oxidant formation was from biodiesel production (55.60%). The studies of Soraya et al. and
Siregar etal. [26,27] suggested that 59% and 54.42%, respectively, of eutrophication’s highest
contributions came from cultivation. In this study, we found that freshwater eutrophication’s
highest contribution came from the oil palm plantations (59.07%). The studies of Soraya et al. and
Siregar etal. [26,27] reported that acidification’s highest contribution was due to cultivation, namely
50% and 52.22%, respectively. In this study, terrestrial acidification’s highest contribution was due to
oil palm plantations (51.84%). This study is in line with Soraym al. and Siregar et al. [26,27], as the
largest contribution of terrestrial acidification was due to the oil palm plantations. Soraya etal. [27]
suggested that the highest contribution of abiotic resource depletion came from cultivation (55%).
In this study, the highest contribution of metal depletion was due to the oil palm plantations (64.57%).
This is supported by Soraya et al. [27], who stated that metal depletion’s largest contribution was
due e oil palm plantations.

Results of the damage assessment of biodiesel production also included CPO-palm oil production
as an input. CPO-palm oil production emerged as the largest contributor to all three damage categories.
The results are shown in Table 11.

Table 11. Damage assessment of biodiesel production.

Biodiesel— . CPO-Palm  Electricity,
Damage . Sodium Water, oil Low

Unit Total Biodiesel =~ Methanol .
Category Hydroxide Ultrapure Production  Voltage

Production
Human health DALY 0.00563  159%10°®  0.000721  851x107%  0.000131  0.00426 0.000426
Ecosystems  speciesyr 269x107% 175x 107 281x107% 301x107 57x1077 217x107° 151x10°°
Resources $ 112.808 0 62.644 1494 3309 38.125 7.235

The damage assessment of biodiesel production showed that, for human health, the three largest
contributions came from methanol (0.000721 DALY), CPO-palm oil production (0.00426 DALY),
and electricity (0.000426 DALY). The three largest contributions to the ecosystems came from
methanol (2.81 x 1076 species-yr), CPO-palm oil production (2.17 x 10-5 species-yr), and electricity
(1.51 x 107° species-yr). Methanol was the largest contributor for damage to resources (62.644 $)
compared to CPO-palm oil production (38.125 §) and electricity (7.235 $) (Table 11).
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The environmental hotspots of damage assessmentin biodiesel production are shownin Figures 5-7.
The network analyses in Figures 5-7 are for human health damage, ecosystem diversity damage,
and resource availability damage, respectively. The environmental hotspots of human health damage,
ecosystem diversity damage, and resource availability damage are shown with a wide red arrow.

The results of the network analysis of damage to human health (DALY) showed that the
environmental hotspot for biodiesel production was with the palm oil production processing unit at
75.70% and, to a lesser extent, with methanol at 12.80%. The environmental hotspots are indicated
in Figure 4 by wide red arrows. Contributors to environmental hotspots in the palm oil production
processing unit were primarily the oil palm plantations (72.80%), followed by electricity (1.73%), water
(1.17%), and diesel (0.13%). The oil palm plantation was demonstrated again to be an environmental
hotspot contributing 72.80% of 75.70% to the environmental hotspots in palm oil production. While the
palm oil production processing unit itself contributed only 2.90%, the biodiesel production processing
unit contributed 24.30% (Figure 5).
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Figure 5. The environmental hotspot from the network analysis of human health damage (DALY).

The biodiesel production environmental hotspot was in the palm oil production processing unit
at 80.70%, and, to a lesser extent, with methanol at 10.40%. The primary contributors to the palm oil
production processing unit were the oil palm plantations (78.50%), followed by electricity (1.29%), water
(1.06%), and diesel (0.15%). This showed the oil palm plantations, once again, as an environmental
hotspot contributing 78.50% of 80.70%. The palm oil production processing unit contributed 2.20%
and the biodiesel production processing unit contributed 19.30% (Figure 6).
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Figure 6. The environmental hotspot from the network analysis of ecosystem diversity damage
(species-yr).

The network analysis on resource availability damage ($) showed that the biodiesel production
environmental hotspot was in the use of methanol, which contributed 55.50%, and with the palm oil
production processing unit, which contributed 33.80%. Environmental hotspots are indicated by the
wide red arrows. Figure 7 shows that the main contributors to environmental hotspots in the palm
oil production processing unit were the oil palm plantations (30.40%), followed by water (1.47%),
electricity (1.47%), and diesel (1.08%). The oil palm plantation was again an environmental hotspot
due to contributing 30.40% of 33.80% to the environmental hotspots in palm oil production. The palm
0il production processing unit contributed 3.40%, while the biodiesel production processing unit
contributed 66.20% (Figure 7).

Based on thf}nvironmental hotspot from a network analysis of human health damage (DALY),
the contribution of oil palm plantations, palm oil production, and the biodiesel production processing
unit, respectively, amounted to 72.80%, 2.90%, and 24.39 (Figure 5). The network analysis of
the ecosystem diversity damage (species-yr) contribution of oil palm plantations showed palm oil
production and the biodiesel production processing unit, respectively, at 78.50%, 2.20%, and 19.30%
(Fme 6). The same analysis, but for resource availability damage ($), showed that the contributions
of oil palm plantations, palm oil production, and the biodiesel production processing unit amounted
to 30.40%, 3.40%, and 66.20%, respectively (Figure 7).
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Figure 7. The environmental hotspot from the network analysis of resource availability damage (8).

The third finding in this study was the total human health damage of biodiesel production,
which was 0.00563 DALY. This comprised 0.0041 DALY from the oil palm plantation unit (72.80%),
0.00016 DALY from the palm oil production processing unit (2.9%), and 0.0014 DALY from the biodiesel
production processing unit. This study also revealed that the total ecosystem diversity damage of
biodiesel production was 2.69 x 1075 species-yr (Table 11), with the main contributor being the CPO
production processing unit. The total damage from biodiesel production to resource availability was
112.808 $ (Table 11), which was mainly contributed to by the biodiesel production unit.

The life cycle of biodiesel production can be made more environmentally friendly if the activities
in the oil palm plantation processing unit are carried out more wisely. That is, if it does not damage the
peat forests and is more frugal in the use of urea fertilizer. Additionally, in the biodiesel production
processing unit, the use of methanol and electricity should be minimized. This findingis a contribution
to the development of science in the endpoint analysis on three damage categories (human health
damage, ecosystem diversity damage, and resource availability damage) in the process of palm oil
biodiesel production in Indonesia. This result may be valuable as a reference for further similar
research and may be influential in the determining of policies by companies and governments.

4. Conclusions

In this study on carbon footprint analysis, human health damage, ecosystem diversity damage,
and resource availability damage caused by biodiesel production from palm oil in Indonesia,
we concluded that, within the life cycle of palm oil biodiesel production, the environmental hotspot
can be found in the oil palm plantation processing unit. N>O gas was, by far, the main culprit for
the high numbers in the fossil CO, eq impact category and this came from the oil palm plantation
processing unit.
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The damage to human health was shown to be significant in the LCA analysis. As a result of the
peatland damage and excessive use of urea, the oil palm plantation processing unit resulted in the
largest carbon footprint, and the most significant damages to human health and ecosystem divEFity.
The biodiesel production processing unit dealt the most damage to resource availability, due to the
excessive use of methanol and electricity.

TEEQife cycle of biodiesel production can be made more environmentally friendly if activities
in the oil palm plantation processing unit are carried out more consciously. That is, a focus on not
damaging peatlands and limiting the use of urea fertilizers, as well as limiting the use of methanol and

electricity in the biodiesel production processing unit.
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